Interplay of physics and evolution in the likely origin of protein biochemical function.
نویسندگان
چکیده
The intrinsic ability of protein structures to exhibit the geometric and sequence properties required for ligand binding without evolutionary selection is shown by the coincidence of the properties of pockets in native, single domain proteins with those in computationally generated, compact homopolypeptide, artificial (ART) structures. The library of native pockets is covered by a remarkably small number of representative pockets (∼400), with virtually every native pocket having a statistically significant match in the ART library, suggesting that the library is complete. When sequences are selected for ART structures based on fold stability, pocket sequence conservation is coincident to native. The fact that structurally and sequentially similar pockets occur across fold classes combined with the small number of representative pockets in native proteins implies that promiscuous interactions are inherent to proteins. Based on comparison of PDB (real, single domain protein structures found in the Protein Data Bank) and ART structures and pockets, the widespread assumption that the co-occurrence of global structure, pocket similarity, and amino acid conservation demands an evolutionary relationship between proteins is shown to significantly underestimate the random background probability. Indeed, many features of biochemical function arise from the physical properties of proteins that evolution likely fine-tunes to achieve specificity. Finally, our study suggests that a repertoire of thermodynamically (marginally) stable proteins could engage in many of the biochemical reactions needed for living systems without selection for function, a conclusion with significant implications for the origin of life.
منابع مشابه
Numerical Modeling of Non-equilibrium Plasma Discharge of Hydrogenated Silicon Nitride (SiH4/NH3/H2)
In this work, we model a radiofrequency discharge of hydrogenated silicon nitride in a capacitive coupled plasma reactor using Maxwellian and non-Maxwellian electron energy distribution function. The purpose is to investigate whether there is a real advantage and a significant contribution using non-Maxwellian electron energy distribution function rather than Maxwellian one for determining the ...
متن کاملUsing Magma Mixing/Mingling Evidence for Understanding Magmatic Evolution at Mount Bidkhan Stratovolcano (South-East Iran)
Mount Bidkhan stratovolcano is located in the central Iranian volcanic belt. It is composed of several types of pyroclastic deposits, lava flows and intrusive bodies. Textural and chemical characteristics of plagioclase phenocrysts from the eruptive products volcanic edifice, record complex magma mixing events over the lifetime of the volcano. Evidences such as xenocrystic high Al+Ti clinopyrox...
متن کاملEnteric redmouth disease: Past, present and future: A review
Enteric red mouth disease (also known as Yersiniosis) is one of the most significant bacterial infections in coldwater fish farms that cause significant mortalities and economical losses in the salmonids fish farms, especially in rainbow trout (Oncorhynchus mykiss). ERM is caused by the gram negative pathogen bacteria Yersinia ruckeri that has five O-serotypes (O1, O2, O5, O6 and O7), five oute...
متن کاملThe Quantum Statistical Mechanical Theory of Transport Processes
A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.
متن کاملFunctional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana
Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 23 شماره
صفحات -
تاریخ انتشار 2013